Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F3 0F E6 /r CVTDQ2PD xmm1, xmm2/m64 | A | V/V | SSE2 | Convert two packed signed doubleword integers from xmm2/mem to two packed double precision floating-point values in xmm1. |
VEX.128.F3.0F.WIG E6 /r VCVTDQ2PD xmm1, xmm2/m64 | A | V/V | AVX | Convert two packed signed doubleword integers from xmm2/mem to two packed double precision floating-point values in xmm1. |
VEX.256.F3.0F.WIG E6 /r VCVTDQ2PD ymm1, xmm2/m128 | A | V/V | AVX | Convert four packed signed doubleword integers from xmm2/mem to four packed double precision floating-point values in ymm1. |
EVEX.128.F3.0F.W0 E6 /r VCVTDQ2PD xmm1 {k1}{z}, xmm2/m64/m32bcst | B | V/V | AVX512VL AVX512F | Convert 2 packed signed doubleword integers from xmm2/m64/m32bcst to eight packed double precision floating-point values in xmm1 with writemask k1. |
EVEX.256.F3.0F.W0 E6 /r VCVTDQ2PD ymm1 {k1}{z}, xmm2/m128/m32bcst | B | V/V | AVX512VL AVX512F | Convert 4 packed signed doubleword integers from xmm2/m128/m32bcst to 4 packed double precision floating-point values in ymm1 with writemask k1. |
EVEX.512.F3.0F.W0 E6 /r VCVTDQ2PD zmm1 {k1}{z}, ymm2/m256/m32bcst | B | V/V | AVX512F | Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed double precision floating-point values in zmm1 with writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
B | Half | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Converts two, four or eight packed signed doubleword integers in the source operand (the second operand) to two, four or eight packed double precision floating-point values in the destination operand (the first operand).
EVEX encoded versions: The source operand can be a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. Attempt to encode this instruction with EVEX embedded rounding is ignored.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a YMM register.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 k := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 k := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+63:i] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) ELSE DEST[i+63:i] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[191:128] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64]) DEST[255:192] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96) DEST[MAXVL-1:256] := 0
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[MAXVL-1:128] := 0
DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[MAXVL-1:128] (unmodified)
VCVTDQ2PD __m512d _mm512_cvtepi32_pd( __m256i a);
VCVTDQ2PD __m512d _mm512_mask_cvtepi32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m512d _mm512_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src);
VCVTDQ2PD __m256d _mm256_mask_cvtepi32_pd( __m256d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m128d _mm_mask_cvtepi32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTDQ2PD __m128d _mm_maskz_cvtepi32_pd( __mmask8 k, __m128i a);
CVTDQ2PD __m128d _mm_cvtepi32_pd (__m128i src)
VEX-encoded instructions, see Table 2-22, “Type 5 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-51, “Type E5 Class Exception Conditions.”
Additionally:
#UD | If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |