Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F3 0F 12 /r MOVSLDUP xmm1, xmm2/m128 | A | V/V | SSE3 | Move even index single precision floating-point values from xmm2/mem and duplicate each element into xmm1. |
VEX.128.F3.0F.WIG 12 /r VMOVSLDUP xmm1, xmm2/m128 | A | V/V | AVX | Move even index single precision floating-point values from xmm2/mem and duplicate each element into xmm1. |
VEX.256.F3.0F.WIG 12 /r VMOVSLDUP ymm1, ymm2/m256 | A | V/V | AVX | Move even index single precision floating-point values from ymm2/mem and duplicate each element into ymm1. |
EVEX.128.F3.0F.W0 12 /r VMOVSLDUP xmm1 {k1}{z}, xmm2/m128 | B | V/V | AVX512VL AVX512F | Move even index single precision floating-point values from xmm2/m128 and duplicate each element into xmm1 under writemask. |
EVEX.256.F3.0F.W0 12 /r VMOVSLDUP ymm1 {k1}{z}, ymm2/m256 | B | V/V | AVX512VL AVX512F | Move even index single precision floating-point values from ymm2/m256 and duplicate each element into ymm1 under writemask. |
EVEX.512.F3.0F.W0 12 /r VMOVSLDUP zmm1 {k1}{z}, zmm2/m512 | B | V/V | AVX512F | Move even index single precision floating-point values from zmm2/m512 and duplicate each element into zmm1 under writemask. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
B | Full Mem | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Duplicates even-indexed single precision floating-point values from the source operand (the second operand). See Figure 4-4. The source operand is an XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the destination operand is an XMM, YMM or ZMM register.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
(KL, VL) = (4, 128), (8, 256), (16, 512) TMP_SRC[31:0] := SRC[31:0] TMP_SRC[63:32] := SRC[31:0] TMP_SRC[95:64] := SRC[95:64] TMP_SRC[127:96] := SRC[95:64] IF VL >= 256 TMP_SRC[159:128] := SRC[159:128] TMP_SRC[191:160] := SRC[159:128] TMP_SRC[223:192] := SRC[223:192] TMP_SRC[255:224] := SRC[223:192] FI; IF VL >= 512 TMP_SRC[287:256] := SRC[287:256] TMP_SRC[319:288] := SRC[287:256] TMP_SRC[351:320] := SRC[351:320] TMP_SRC[383:352] := SRC[351:320] TMP_SRC[415:384] := SRC[415:384] TMP_SRC[447:416] := SRC[415:384] TMP_SRC[479:448] := SRC[479:448] TMP_SRC[511:480] := SRC[479:448] FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_SRC[i+31:i] ELSE IF *merging-masking* THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
DEST[31:0] := SRC[31:0] DEST[63:32] := SRC[31:0] DEST[95:64] := SRC[95:64] DEST[127:96] := SRC[95:64] DEST[159:128] := SRC[159:128] DEST[191:160] := SRC[159:128] DEST[223:192] := SRC[223:192] DEST[255:224] := SRC[223:192] DEST[MAXVL-1:256] := 0
DEST[31:0] := SRC[31:0] DEST[63:32] := SRC[31:0] DEST[95:64] := SRC[95:64] DEST[127:96] := SRC[95:64] DEST[MAXVL-1:128] := 0
DEST[31:0] := SRC[31:0] DEST[63:32] := SRC[31:0] DEST[95:64] := SRC[95:64] DEST[127:96] := SRC[95:64] DEST[MAXVL-1:128] (Unmodified)
VMOVSLDUP __m512 _mm512_moveldup_ps( __m512 a);
VMOVSLDUP __m512 _mm512_mask_moveldup_ps(__m512 s, __mmask16 k, __m512 a);
VMOVSLDUP __m512 _mm512_maskz_moveldup_ps( __mmask16 k, __m512 a);
VMOVSLDUP __m256 _mm256_mask_moveldup_ps(__m256 s, __mmask8 k, __m256 a);
VMOVSLDUP __m256 _mm256_maskz_moveldup_ps( __mmask8 k, __m256 a);
VMOVSLDUP __m128 _mm_mask_moveldup_ps(__m128 s, __mmask8 k, __m128 a);
VMOVSLDUP __m128 _mm_maskz_moveldup_ps( __mmask8 k, __m128 a);
VMOVSLDUP __m256 _mm256_moveldup_ps (__m256 a);
VMOVSLDUP __m128 _mm_moveldup_ps (__m128 a);
None.
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Exceptions Type E4NF.nb in Table 2-50, “Type E4NF Class Exception Conditions.”
Additionally:
#UD | If EVEX.vvvv != 1111B or VEX.vvvv != 1111B. |