Opcode/Instruction | Op/En | 64/32 Bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.128.66.0F38.W0 42 /r VGETEXPPS xmm1 {k1}{z}, xmm2/m128/m32bcst | A | V/V | AVX512VL AVX512F | Convert the exponent of packed single-precision floating-point values in the source operand to single-precision floating-point results representing unbiased integer exponents and stores the results in the destination register. |
EVEX.256.66.0F38.W0 42 /r VGETEXPPS ymm1 {k1}{z}, ymm2/m256/m32bcst | A | V/V | AVX512VL AVX512F | Convert the exponent of packed single-precision floating-point values in the source operand to single-precision floating-point results representing unbiased integer exponents and stores the results in the destination register. |
EVEX.512.66.0F38.W0 42 /r VGETEXPPS zmm1 {k1}{z}, zmm2/m512/m32bcst{sae} | A | V/V | AVX512F | Convert the exponent of packed single-precision floating-point values in the source operand to single-precision floating-point results representing unbiased integer exponents and stores the results in the destination register. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | Full | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Extracts the biased exponents from the normalized single-precision floating-point representation of each dword element of the source operand (the second operand) as unbiased signed integer value, or convert the denormal representation of input data to unbiased negative integer values. Each integer value of the unbiased exponent is converted to single-precision floating-point value and written to the corresponding dword elements of the destination operand (the first operand) as single-precision floating-point numbers.
The destination operand is a ZMM/YMM/XMM register and updated under the writemask. The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Each GETEXP operation converts the exponent value into a floating-point number (permitting input value in denormal representation). Special cases of input values are listed in Table 5-17.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation and GETMANT operation (see VGETMANTPD). Thus VGETEXPxx instruction do not require software to handle SIMD floating-point exceptions.
Input Operand | Result | Comments |
---|---|---|
src1 = NaN | QNaN(src1) | If (SRC = SNaN) then #IE If (SRC = denormal) then #DE |
0 < |src1| < INF | floor(log2(|src1|)) | |
| src1| = +INF | +INF | |
| src1| = 0 | -INF |
Figure 5-14 illustrates the VGETEXPPS functionality on input values with normalized representation.
NormalizeExpTinySPFP(SRC[31:0]) { // Jbit is the hidden integral bit of a floating-point number. In case of denormal number it has the value of ZERO. Src.Jbit := 0; Dst.exp := 1; Dst.fraction := SRC[22:0]; WHILE(Src.Jbit = 0) { Src.Jbit := Dst.fraction[22]; // Get the fraction MSB Dst.fraction := Dst.fraction << 1 ; // One bit shift left Dst.exp-- ; // Decrement the exponent } Dst.fraction := 0; Dst.sign := 1; TMP[31:0] := MXCSR.DAZ? 0 : (Dst.sign << 31) OR (Dst.exp << 23) OR (Dst.fraction) ; Return (TMP[31:0]); } ConvertExpSPFP(SRC[31:0]) { Src.sign := 0; // Zero out sign bit Src.exp := SRC[30:23]; Src.fraction := SRC[22:0]; // Check for NaN IF (SRC = NaN) { IF ( SRC = SNAN ) SET IE; Return QNAN(SRC); } // Check for +INF IF (Src = +INF) RETURN (Src); // check if zero operand IF ((Src.exp = 0) AND ((Src.fraction = 0) OR (MXCSR.DAZ = 1))) Return (-INF); } ELSE // check if denormal operand (notice that MXCSR.DAZ = 0) { IF ((Src.exp = 0) AND (Src.fraction != 0)) { TMP[31:0] := NormalizeExpTinySPFP(SRC[31:0]) ; // Get Normalized Exponent Set #DE } ELSE // exponent value is correct { TMP[31:0] := (Src.sign << 31) OR (Src.exp << 23) OR (Src.fraction) ; } TMP := SAR(TMP, 23) ; // Shift Arithmetic Right TMP := TMP – 127; // Subtract Bias Return CvtI2S(TMP); // Convert INT to single precision floating-point number } }
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC *is memory*) THEN DEST[i+31:i] := ConvertExpSPFP(SRC[31:0]) ELSE DEST[i+31:i] := ConvertExpSPFP(SRC[i+31:i]) FI; ELSE IF *merging-masking* THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VGETEXPPS __m512 _mm512_getexp_ps( __m512 a);
VGETEXPPS __m512 _mm512_mask_getexp_ps(__m512 s, __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_maskz_getexp_ps( __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_getexp_round_ps( __m512 a, int sae);
VGETEXPPS __m512 _mm512_mask_getexp_round_ps(__m512 s, __mmask16 k, __m512 a, int sae);
VGETEXPPS __m512 _mm512_maskz_getexp_round_ps( __mmask16 k, __m512 a, int sae);
VGETEXPPS __m256 _mm256_getexp_ps(__m256 a);
VGETEXPPS __m256 _mm256_mask_getexp_ps(__m256 s, __mmask8 k, __m256 a);
VGETEXPPS __m256 _mm256_maskz_getexp_ps( __mmask8 k, __m256 a);
VGETEXPPS __m128 _mm_getexp_ps(__m128 a);
VGETEXPPS __m128 _mm_mask_getexp_ps(__m128 s, __mmask8 k, __m128 a);
VGETEXPPS __m128 _mm_maskz_getexp_ps( __mmask8 k, __m128 a);
Invalid, Denormal.
See Table 2-46, “Type E2 Class Exception Conditions.”
Additionally:
#UD | If EVEX.vvvv != 1111B. |